DOODLE GOOGLE - PIERRE DE FERMAT É HOMENAGEADO PELO GOOGLE PELOS 410 ANOS DE NASCIMENTO

Hoje o "Doodle Google" (17/08/2011) está homenageando Pierre de Fermat pelos 410 anos de nascimento com uma imagem que representa o "Último Teorema de Fermat" ou "Teorema de Fermat-Wiles" proposto por ele que é  x^n+y^n=z^n \,\! O teorema deve esse nome a Pierre de Fermat, que escreveu às margens de uma tradução de Arithmetica de Diofanto, ao lado do enunciado deste problema:


"Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet."
"Encontrei uma demonstração verdadeiramente maravilhosa disto, mas esta margem é estreita demais para contê-la."
. Confira abaixo.




De acordo com a Wikipédia  escrever nas margens dos livros era um costume de Fermat e foi graças ao seu filho mais velho, Clément-Samuel, que suas anotações não se perderam para sempre. Clément-Samuel, depois de passar cinco anos recolhendo cartas e anotações de seu pai, publica em 1670, em Toulouse, a Aritmética de Diofante contendo observações de Pierre de Fermat, cuja página 61 continha o teorema.

Naturalmente, há quem duvide que ele tenha dito a verdade. Gerações inteiras de matemáticos têm amaldiçoado a falta de espaço daquela margem. Por mais de três séculos, praticamente todos os grandes expoentes da Matemática (entre eles Euler e Gauss) debruçaram-se sobre o assunto. Com o advento dos computadores foram testados milhões de algarismos com diferentes valores para x, y, z e n e a igualdade  xn + yn = zn não se verificou. Assim empiricamente se comprova que Fermat tinha razão. Mas e a demonstração? Um renomado empresário e matemático alemão – Paul Wolfskehl – na noite em que decidira suicidar-se em sua biblioteca, deparou-se com o Último Teorema de Fermat, e mudou de idéia. Em seu testamento, deixou em 1906 a quantia de 100.000 marcos para quem o demonstrasse.
O teorema desafiou matemáticos por todo o mundo durante 358 anos, até que Andrew Wiles, um matemático britânico, conseguiu demonstrá-lo, primeiramente em 1993 e, depois de corrigir alguns erros apontados, definitivamente em 1995. Cumpre esclarecer que Wiles utilizou conceitos avançadíssimos, com os quais Fermat nem poderia ter sonhado. Assim chega ao fim uma história épica na busca do Santo Graal da Matemática.

Pierre de Fermat 17 de Agosto de 1601 - 12 de Janeiro de  1665
ESPIRAL DE FERMAT
Sempre disposto a obter generalizações, introduziu as espirais de grau superior rn = anθ, e comparou os arcos delas com os das parábolas de grau superior xn-1 = 2ay. À espiral de equação polar r2 = a2θ chama-se espiral parabólica ou de Fermat, porque a sua equação sugere superficialmente a equação de uma parábola e porque Fermat a estudou, intensamente, em 1936.


O trabalho feito por Fermat, sobre espirais foi baseado no caminho descrito por corpos em queda livre e nos métodos generalizados do trabalho de Arquimedes, On Spirals, conseguindo calcular áreas «debaixo» de espirais. É curioso que um dos trabalhos de Fermat seja sobre corpos em queda livre, já que ele se interessava muito pouco pela física. Aliás, neste estudo esteve sempre mais interessado em provar teoremas geométricos, do que em fazer relações com o real. Hoje, alguns pesquisadores utilizam esta forma como um modelo matemático da disposição das sementes nas flores.



TEORIA DA PROBABILIDADE
Outra contribuição importante de Fermat se insere na Teoria da Probabilidade. Seus avanços nesta área deram-se por volta de 1654, quando passou a trocar cartas com Pascal. A probabilidade era um assunto desconhecido por Fermat até então, que passou a objetivar descobrir as regras matemáticas que descrevessem com maior precisão as leis do acaso. Posteriormente, ambos determinaram as regras essenciais da probabilidade, e Pascal chegou até mesmo a se convencer de que poderia utilizar as suas teorias para justificar a crença em Deus. Mais especificamente em uma carta datada de 24 de agosto de 1654, endereçada a Pascal, Fermat discute o seguinte problema: dois jogadores A e B, quando A precisa de 2 pontos para ganhar e B 3 pontos, o jogo será certamente decidido em quatro jogadas. Para saber quem tem mais chance de ganhar, o matemático escreve todas as combinações possíveis entre as letras a, que representa uma jogada em favor do jogador A e b, que representa uma em favor do jogador B:
  • 01 – aaaa 09 – baaa
  • 02 – aaab 10 – baab
  • 03 – aaba 11 – baba
  • 04 – aabb 12 – babb
  • 05 – abaa 13 – bbaa
  • 06 – abab 14 – bbab
  • 07 – abba 15 – bbba
  • 08 – abbb 16 – bbbb
Assim, sendo, em um total de 16, têm-se 11 casos favoráveis para A contra 5 favoráveis para B, visto que a ocorrência de 2 ou mais a é favorável para A e a ocorrência de 3 ou mais b para B. A solução dada por Pascal é a seguinte: suponhamos que cada um dos jogadores aposte a mesma quantia, 32 pistolas (moeda da época), aquele que tirar primeiramente três vezes, seguidas ou não, o número que aposta no dado, de 1 a 6, ganhará, num total de quatro partidas. Suponhamos também que o primeiro jogador tenha ganhado duas partidas e o segundo apenas uma. Como dividir, se a partida for interrompida agora, as 64 pistolas ? Pascal explica que, se o jogo terminar empatado então cada um fica com 32 pistolas, logo o primeiro jogador já as tem, porém como ele ainda pode ganhar, deve-se partilhar as outras 32 pistolas, ficando o primeiro jogador com 48 e o segundo com 16.
Este problema foi proposto por Pascal, que incitou Fermat a refletir sobre ele, Rose Ball (1960) explicita apenas mais um problema de probabilidade relacionado a Fermat, que também foi proposto por Pascal e também está relacionado com jogos, trata-se da seguinte questão: uma pessoa quer tirar 6 no dado em 8 jogadas, suponhamos que ela tenha feito 3 tentativas e falhado, quanto de dinheiro ela poderia apostar em seu sucesso, ou seja, tirar um 6, na quarta jogada? Fermat raciocinou da seguinte maneira: a chance de se tirar um 6 no dado é de 1/6, logo ela poderia apostar 1/6 do dinheiro, não obtendo sucesso, na segunda tentativa, ela deveria apostar 1/6 do que sobrou do dinheiro, isto é, 5/36, e assim por diante, tendo que apostar na quarta tentativa 125/1296 de seu dinheiro. Isso ilustra o modo descompromissado com que Fermat tratava a probabilidade, resolvendo apenas os problemas que foram postulados por Pascal em suas correspondências. A maior dedicação deste matemático foi realmente a teoria dos números e vários tipos de jogos com números, os quais ele mesmo criava e desafiava os outros matemáticos a resolverem.
POLÊMICA
Coube a Fermat a entronização de eixos perpendiculares, a descoberta das equações da recta e da circunferência, e as equações mais simples de elipsesparábolas e hipérboles. Por mérito, as coordenadas cartesianas deviam denominar-se coordenadas fermatianas. Cartesius é a forma latinizada de René Descartes. Foi mais filósofo que matemático e em sua obraDiscours de la Méthode (3.º apêndice, La Géométrie), publicada em 1637, se limitou a apresentar as idéias fundamentais sobre a resolução de problemas geométricos com utilização da Álgebra. Porém, é curioso observar que o sistema hoje denominado cartesiano não tem amparo histórico, pois sua obra nada contém sobre eixos perpendiculares, coordenadas de um ponto e nem mesmo a equação de uma reta. No entanto, Descartes "mantém um lugar seguro na sucessão canônica dos altos sacerdotes do pensamento, em virtude da têmpera racional de sua mente e sua sucessão na unidade do conhecimento. Ele fez soar o gongo e a civilização ocidental tem vibrado desde então com o espírito cartesiano de ceticismo e de indagação que ele tornou de aceitação comum entre pessoas educadas" (George Simmons). Segundo ainda este proeminente autor, La Géométrie "foi pouco lida então e menos lida hoje, e bem merecidamente".

LeaLTudo ↓↓↓

*

☺☺